Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy
نویسندگان
چکیده
The properties of graphene depend sensitively on strain and doping affecting its behavior in devices and allowing an advanced tailoring of this material. A knowledge of the strain configuration, i.e. the relative magnitude of the components of the strain tensor, is particularly crucial, because it governs effects like band-gap opening, pseudo-magnetic fields, and induced superconductivity. It also enters critically in the analysis of the doping level. We propose a method for evaluating unknown strain configurations and simultaneous doping in graphene using Raman spectroscopy. In our analysis we first extract the bare peak shift of the G and 2D modes by eliminating their splitting due to shear strain. The shifts from hydrostatic strain and doping are separated by a correlation analysis of the 2D and G frequencies, where we find ∆ω2D/∆ωG = 2.21 ± 0.05 for pure hydrostatic strain. We obtain the local hydrostatic strain, shear strain and doping without any assumption on the strain configuration prior to the analysis, as we demonstrate for two model cases: Graphene under uniaxial stress and graphene suspended on nanostructures that induce strain. Raman scattering with circular corotating polarization is ideal for analyzing frequency shifts, especially for weak strain when the peak splitting by shear strain cannot be resolved. PAPER 2018 Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. RECEIVED
منابع مشابه
Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization
Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale char...
متن کاملThe influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene
The impact of polymer removal by forming gas and vacuum annealing on the doping, strain, and morphology of chemical vapor deposited (CVD) and mechanically exfoliated (ME) graphene is investigated using Raman spectroscopy and atomic force microscopy (AFM). The behavior of graphene exposed and unexposed to polymer is compared. It is found that the well-known doping effect after forming gas anneal...
متن کاملRaman Spectroscopy of Graphene and Related Materials
This chapter is a review of the application of Raman spectroscopy in characterizing the properties of graphene, both exfoliated and synthesized, and graphene-based materials such as graphene-oxide. Graphene is a 2dimensional honeycomb lattice of sp2-bonded carbon atoms and has received enormous interest because of its host of interesting material properties and technological potentials. Raman s...
متن کاملScanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping
We have investigated antidot lattices, which were prepared on exfoliated graphene single layers via electron-beam lithography and ion etching, by means of scanning Raman spectroscopy. The peak positions, peak widths, and intensities of the characteristic phonon modes of the carbon lattice have been studied systematically in a series of samples. In the patterned samples, we found a systematic st...
متن کاملRaman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects
We review recent work on Raman spectroscopy of graphite and graphene. We focus on the origin of the D and G peaks and the second order of the D peak. The G and 2D Raman peaks change in shape, position and relative intensity with number of graphene layers. This reflects the evolution of the electronic structure and electron–phonon interactions. We then consider the effects of doping on the Raman...
متن کامل